
To Catch a Battleship

New Mexico

Supercomputing Challenge

Final Report

April 11th, 2021

Team 60

Media Arts Collaborative Charter School

Team Members

Tyler Wyskochil

Teacher

Tanya Mueller

Mentors

Creighton Edington

Harry Henderson



Executive Summary

Almost everyone has played the game battleship at some point in their life. When we

played however we probably only shot at random, or specific locations that our friends liked to

use. For my project the question I wanted to answer was what shot pattern would sink the

enemies ships in the least amount of turns in the game Battleship. By simulating a game of

Battleship I was able to find which patterns were the best when in different situations including

what finds something the fastest or what found the smaller ship more often.

My multiple running hypotheses include my null hypothesis where all of my search

patterns have the same effectiveness. My second hypothesis where having a gap of one was

most effective. My third hypothesis where having a gap of two was the most effective. My fourth

hypothesis was if the gap of three was the most effective. My final hypothesis was if the gap of

four was the most effective.

The project was done by randomly spawning four boats. After running each shot type

10,000 times, I was able to see which pattern did the best in different types of situations. The

results for what pattern found all the boats the fastest showed that my null hypothesis was

correct. There was no statistical difference between the effectiveness of the patterns. However,

the results also showed that by searching small you find small, and by searching large you find

large. With each search pattern the bigger the gap the higher the chance that you would find the

larger ships first. This worked the same with the smaller pattern as the smaller boats were found

significantly more often than any other pattern.



Introduction

With this being my first year coding I was having trouble coming up with something to

work on for this project. I simply didn’t understand the capabilities and limitations of Netlogo. I

decided it would be best then to go through some of the archives older projects done during

previous supercomputing years to get an idea of what to do. It was through searching these

projects that I found someone from my school who had worked on a project about the best way

to find boats in the game Battleship. As someone who always used Battleship as their go to

game I was interested in the best way to win. After looking through it however, I found that the

project was never completed, so I decided to do the project justice and do it myself. The

program simulates a game of battleship by creating a 10X10 board and spawning four boats. I

chose to spawn four boats instead of five because having two ships of the same length

negatively affected the results. The program then shoots in one of the set patterns. The program

then runs the selected pattern until it hits a boat, where it will shoot around the hit location in an

attempt to find the boat. Once it destroys the boat it hit, it will continue on with the selected

pattern until all boats are found.



Description

The first hurdle I had to overcome was figuring out how to do the shot patterns. I tried

several ways to try to set up the patterns by having a single mathematical procedure to do the

shots. For example I tried using mod as a way to separate my shot patterns. Sadly I was never

able to get that to work so instead I was forced to come up with another method.

. This new method used text documents that would hold the exact shot positions of the

search patterns. A text file was made for each specific pattern. I then made a block of code that

would read the text document and assign the numbers to a list that would be used for the

pattern. For random I simply just used “select one-of patches” to determine what patch would be

targeted.



How I created the pattern for the 4-skip pattern

Partial 1-skip on the left and partial 4-skip on the right.



The next step in creating my code was to create the boats. I initially created a simple

while loop that would randomly choose a patch then create a boat in a random direction then

lowered the value that determined the boat size. This original idea had many issues. The first

issue was due to a problem with the recursion it would sometimes make too many or too few

boats. It also had a major issue with it trying to call “nobody”. I attempted multiple different ways

to fix this problem. I tried limiting the spawn area so that a nobody patch could never be called. I

also tried setting up an if statement that would reset the program if nobody was called. I

attempted to get help through the coding help session but it was never resolved.

Because none of these solutions worked and with the deadline moving closer I decided to work

on another section of code.

The next step in creating the program was to make a system so that when a boat was

hit, it would seek out the remaining parts of the boat. This section was rather simple, for this I

made a simple program that would check neighbors4 before coloring in each location depending

on whether the patch was a hit or a miss. If the shot did not hit a boat then it was a miss so the

patch would be colored white. If the shot did hit a boat then the patch would be colored red then

rerun the code centered on the new patch. To verify that my program wasn’t negatively affecting



my results I tested the random shot pattern against itself with one using the code to finish off the

boat while the other would just shoot at random. This verified that my code was helping in the

efficiency of my program.

Since I needed to be able to consistently place boats to move forward I put my focus

back on spawning boats. I fixed the nobody issue by removing world wrapping and making the

world an 11x11 with a border on the side of the world. The border would keep boats from

wrapping around the world without the use of world wrapping which was causing the error.

Throughout the project because I was new to coding my mentor would show me different

ways to solve problems by looking at other examples of code for Netlogo. During these

meetings we analysed why these worked and compared what they did better as well as what I

myself did better. After looking at these I was able to make much more optimised code by taking

elements from their code and combining it with my own to make a better version of my program.

By doing this I was able to figure out how to fix my nobody error.



After the main code was finished I had to figure out how to get the program to record the

order of how boats were hit. This was a lot more difficult than I had expected. Due to the way I

initially created the boats, I couldn’t just change a variable to have it read as destroyed.

Because of this I had to rewrite most of the code that was used to create the boats. Instead of

using a loop I had to create every boat individually so that they could all have a personal

variable for their boat type. After that I created a section of code that would count the number of

patches for that type of boat and if it hit 0 then the monitor would put the name of the boat that

first got destroyed. While making this to count for the second, third and fourth destroyed ships

however things got a bit more complicated. The first monitor would overwrite the other monitors

leading to all monitors only showing a single boat name. To fix this I created a block of code that

would check the fourth and third monitors before the first which let me change the first without

overwriting the others. Here was the final result.



Results

Using the random shot as the baseline we can see how effective each pattern was in

finding the boats. After running each pattern 10,000 it was shown that for the Skip-1 pattern it

would take an average of 65 shots to find all of the boats. This is within the standard deviation of

random so compared to random there is no major statistical difference in total shots fired. For

the skip-2 pattern it took 63 shots to find all of the boats which are also within the standard

deviation making skip-2 have no major difference in total shots fired. Skip-3 pattern followed this

trend with it also taking on average 65 boats to find all of the boats. It's within the standard

deviation and is not a significant enough of a difference. Finally the Skip-4 pattern required an

average shot count of 67 which is also not a significant difference. Because all of the shot

patterns had negligible differences in total shot count, my null hypothesis was correct.



Hypothesis # Hypothesis Statement Average Shots Within SD1? Supported?

H0 Null- No Difference Random = 70 All patterns Yes

H1 Skip-1 Pattern most effective 65 Yes No

H2 Skip-2 Pattern most effective 63 Yes No

H3 Skip-3 Pattern most effective 65 Yes No

H4 Skip-4 Pattern most effective 67 Yes No

Even though the differences in shot count were negligible, the data showed that the order that

each ship was found in differed heavily between each shot pattern. The program would find the

equivalent sized boat more often than the other patterns. For example while the 4-skip pattern

would find the carrier the most, it would find the battleship first nearly as often as it would find

the carrier. This pattern was the same for all shot patterns besides the random.



As you can see, while the pt-boat is found last most often in all shot patterns it is found

significantly more in the 1-skip pattern compared to the others. This is because the Skip-1

pattern cannot miss the pt-boat like the other patterns can.

The 2-skip pattern shows that despite being smaller than the other two boats, its chance

of being hit is nearly as high as the battleship and carrier. It also shows a trend with the patterns

where the boats smaller than the shot pattern get hit much less than the other boats. This trend

continues with the skip-3 pattern as there is a significant drop in how often the cruiser is hit. For

the 4-skip pattern this is shown even more as the carrier has a significantly higher chance of

being hit before any other boat. This is because the larger the gap between shots the higher the

chance that a boat can be missed and require the program to go back to fill in the gaps.

Significance of Results

While how you search patterns may not change the speed of which you find things it will

change the order that you find things in. The biggest take away from this experiment is that by

searching big you will find big and by searching small you will find small. This idea can be

explored in many different ways whether it be in real life searching or by searching through data.

A more refined version of this type of search could be useful in search or rescue as if a larger

boat was lost at sea somewhere then it might be more useful to look in a large area instead of

relentlessly searching. The same goes for searching for a smaller boat. It's better to search in a

smaller area if the thing you're looking for is also smaller.



Reflection

There were a lot of things I had to learn in the making of this program. The first of which

is the importance of pseudo-code when making a larger project like this. A lot of code had to be

rewritten due to the lack of a planning phase. Another thing I learned was the importance of

commenting what the code did as well as more detailed descriptions of complex code. I also

learned the importance of meaningful variable names, especially when you have others looking

at your code. Just because I understood it didn't mean that others or future me would

understand what I was trying to do.

I also learned that things will not always turn out the way you expect them to. I was

hoping to find the best way to win Battleship but instead found a new way of searching. While

the discovery turned out to be interesting, it goes to show that there is always something hiding

under the surface if you just take the time to look.

I would like to give my thanks to the many people who helped me during this project

including my teacher Dr. Mueller, my mentors Mr, Edington and Mr, Henderson, Seungbin

Chung for the idea of this project, and the kind teachers of the netlogo help sessions.



Citations:

Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected
Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.

http://ccl.northwestern.edu/netlogo/

